The quality of the research findings published by our laboratory over the past 15 years is reflected by the breadth and multidisciplinary nature of our studies. Accordingly, the capacity to publish studies in top-ranked journals such as Molecular Cell, Genes & Development, Nature Structural & Molecular Biology, Cell Reports, PLoS Genetics, and Nature Communications is a clear indication of the exceptional significance of our findings and depth of our research contributions.
Repression of pervasive antisense transcription is the primary role of fission yeast RNA polymerase II CTD Serine 2 phosphorylation
Boulanger, C., Haidara, N., Yague-Sanz, C., Larochelle, M., Jacques, P-É., Hermand, D., and F. Bachand. (2024). Nucleic Acids Research, In press. http://10.1093/nar/gkae436
Chromatin remodeling by Pol II primes efficient Pol III transcription
Yague-Sanz, C., Midget, V., Larochelle, M., Bachand, F., Wéri, M., Morillon, A., and D. Hermand. (2023). Nature Communications 14, 3587. https://www.nature.com/articles/s41467-023-39387-4
The conserved RNA-binding protein Seb1 promotes cotranscriptional ribosomal RNA processing by controlling RNA polymerase I progression
Duval, M., Yague-Sanz, C., Turowski, T.W., Petfalski, E., Tollervey, D., and F. Bachand (2023). Nature Communications 14, 3013. https://rdcu.be/dcX39
Ribosomal Protein uS5 and Friends: Protein–Protein Interactions Involved in Ribosome Assembly and Beyond
Landry-Voyer, A.M., Mir Hassani, Z., Avino, M. and F. Bachand (2023). Biomolecules, 13: 853. https://pubmed.ncbi.nlm.nih.gov/36754576/
PABPN1 prevents the nuclear export of an unspliced RNA with a constitutive transport element and controls human gene expression via intron retention
Kwiatek, L., Landry-Voyer, A.M., Latour, M., Yague-Sanz, C., and F. Bachand (2023). RNA Journal, 29: 644-662. https://pubmed.ncbi.nlm.nih.gov/36754576/
Fission yeast proteins Puf2 and Puf4 are involved in repression of frp1 expression in response to iron
Beadoin, J., Normant, V., Brault, A., Henry, DJ., Bachand, F., Massé, E., Chua, G., and S. Labbé (2021). Molecular Microbiology 116: 1361-1377. https://pubmed.ncbi.nlm.nih.gov/34614242/
Co-transcriptional RNA cleavage by Drosha homolog Pac1 triggers transcription termination in fission yeast
Yague-Sanz, C., M. Duval, M. Larochelle, and F. Bachand (2021). Nucleic Acids Res 49:8610-8624. https://pubmed.ncbi.nlm.nih.gov/34352089/
PDCD2 functions as an evolutionarily conserved chaperone dedicated for the 40S ribosomal protein uS5 (RPS2)
Landry-Voyer, A. M., D. Bergeron, C. Yague-Sanz, B. Baker and F. Bachand (2020). Nucleic Acids Res, 48:12900-12916. https://pubmed.ncbi.nlm.nih.gov/33245768/
Nutrient-dependent control of RNA polymerase II elongation rate regulates specific gene expression programs by alternative polyadenylation
Yague-Sanz, C., Y. Vanrobaeys, R. Fernandez, M. Duval, M. Larochelle, J. Beaudoin, J. Berro, S. Labbe, P. E. Jacques and F. Bachand (2020). Genes Dev 34: 883-897. https://www.ncbi.nlm.nih.gov/pubmed/32499400
Senataxin homologue Sen1 is required for efficient termination of RNA polymerase III transcription.
Rivosecchi, J., M. Larochelle, C. Teste, F. Grenier, A. Malapert, E. P. Ricci, P. Bernard, F. Bachand and V. Vanoosthuyse (2019). EMBO J 38: e101955. https://www.ncbi.nlm.nih.gov/pubmed/31294478
Proximity-dependent biotinylation mediated by TurboID to identify protein-protein interaction networks in yeast.
Larochelle, M., D. Bergeron, B. Arcand and F. Bachand (2019). J Cell Sci 132. https://www.ncbi.nlm.nih.gov/pubmed/31064814
The 40S ribosomal protein uS5 (RPS2) assembles into an extra-ribosomal complex with human ZNF277 that competes with the PRMT3-uS5 interaction.
Dionne, K. L., D. Bergeron, A. M. Landry-Voyer and F. Bachand (2019). J Biol Chem 294: 1944-1955. https://www.ncbi.nlm.nih.gov/pubmed/30530495
Proteomic profiling and functional characterization of post-translational modifications of the fission yeast RNA exosome
Telekawa, C., F. M. Boisvert and F. Bachand (2018). Nucleic Acids Res 46: 11169-11183. https://www.ncbi.nlm.nih.gov/pubmed/30321377
Common mechanism of transcription termination at coding and noncoding RNA genes in fission yeast
Larochelle, M., M. A. Robert, J. N. Hebert, X. Liu, D. Matteau, S. Rodrigue, B. Tian, P. E. Jacques and F. Bachand (2018). Nat Commun 9: 4364. https://www.ncbi.nlm.nih.gov/pubmed/30341288
Long noncoding RNA repertoire and targeting by nuclear exosome, cytoplasmic exonuclease, and RNAi in fission yeast
Atkinson, S. R., S. Marguerat, D. A. Bitton, M. Rodriguez-Lopez, C. Rallis, J. F. Lemay, C. Cotobal, M. Malecki, P. Smialowski, J. Mata, P. Korber, F. Bachand and J. Bahler (2018). RNA 24: 1195-1213. https://www.ncbi.nlm.nih.gov/pubmed/29914874
Comparative analysis of alternative polyadenylation in S. cerevisiae and S. pombe
Liu, X., M. Hoque, M. Larochelle, J. F. Lemay, N. Yurko, J. L. Manley, F. Bachand and B. Tian (2017). Genome Res 27: 1685-1695. http://www.ncbi.nlm.nih.gov/pubmed/28916539
Polyadenylation site selection: linking transcription and RNA processing via a conserved carboxy-terminal domain (CTD)-interacting protein
Larochelle, M., J. Hunyadkurti and F. Bachand (2017). Curr Genet 63: 195-199. http://www.ncbi.nlm.nih.gov/pubmed/27582274
Multiple Transcriptional and Post-transcriptional Pathways Collaborate to Control Sense and Antisense RNAs of Tf2 Retroelements in Fission Yeast.
Mallet, P. L., M. Larochelle and F. Bachand (2017). Genetics 205: 621-632. https://www.ncbi.nlm.nih.gov/pubmed/28007890
Human PDCD2L Is an Export Substrate of CRM1 That Associates with 40S Ribosomal Subunit Precursors
Landry-Voyer, A. M., S. Bilodeau, D. Bergeron, K. L. Dionne, S. A. Port, C. Rouleau, F. M. Boisvert, R. H. Kehlenbach and F. Bachand (2016). Mol Cell Biol 36: 3019-3032. http://www.ncbi.nlm.nih.gov/pubmed/27697862
The Nrd1-like protein Seb1 coordinates cotranscriptional 3' end processing and polyadenylation site selectio
Lemay, J. F., S. Marguerat, M. Larochelle, X. Liu, R. van Nues, J. Hunyadkurti, M. Hoque, B. Tian, S. Granneman, J. Bahler and F. Bachand (2016). Genes Dev 30: 1558-1572. http://www.ncbi.nlm.nih.gov/pubmed/27401558
A Polyadenylation-Dependent 3' End Maturation Pathway Is Required for the Synthesis of the Human Telomerase RNA
Nguyen, D., V. Grenier St-Sauveur, D. Bergeron, F. Dupuis-Sandoval, M. S. Scott and F. Bachand (2015). Cell Rep 13: 2244-2257. http://www.ncbi.nlm.nih.gov/pubmed/26628368
Fail-safe transcription termination: Because one is never enough
Lemay, J. F. and F. Bachand (2015). RNA Biol 12: 927-932. https://www.ncbi.nlm.nih.gov/pubmed/26273910
Regulated Intron Retention and Nuclear Pre-mRNA Decay Contribute to PABPN1 Autoregulation
Bergeron, D., G. Pal, Y. B. Beaulieu, B. Chabot and F. Bachand (2015). Mol Cell Biol 35: 2503-2517. http://www.ncbi.nlm.nih.gov/pubmed/25963658
Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yea
Bitton, D. A., S. R. Atkinson, C. Rallis, G. C. Smith, D. A. Ellis, Y. Y. Chen, M. Malecki, S. Codlin, J. F. Lemay, C. Cotobal, F. Bachand, S. Marguerat, J. Mata and J. Bahler (2015). Genome Res 25: 884-896. http://www.ncbi.nlm.nih.gov/pubmed/25883323
The RNA exosome promotes transcription termination of backtracked RNA polymerase II
Lemay, J. F., M. Larochelle, S. Marguerat, S. Atkinson, J. Bahler and F. Bachand (2014). Nat Struct Mol Biol 21: 919-926. http://www.ncbi.nlm.nih.gov/pubmed/25240800
Poly(A) tail-mediated gene regulation by opposing roles of Nab2 and Pab2 nuclear poly(A)-binding proteins in pre-mRNA decay
Grenier St-Sauveur, V., S. Soucek, A. H. Corbett and F. Bachand (2013). Mol Cell Biol 33: 4718-4731. http://www.ncbi.nlm.nih.gov/pubmed/24081329
A proline-tyrosine nuclear localization signal (PY-NLS) is required for the nuclear import of fission yeast PAB2, but not of human PABPN1
Mallet, P. L. and F. Bachand (2013). Traffic 14: 282-294. http://www.ncbi.nlm.nih.gov/pubmed/23279110
The THO complex cooperates with the nuclear RNA surveillance machinery to control small nucleolar RNA expression
Larochelle, M., J. F. Lemay and F. Bachand (2012). Nucleic Acids Res 40: 10240-10253. http://www.ncbi.nlm.nih.gov/pubmed/22965128
Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein nuclear 1
Beaulieu, Y. B., C. L. Kleinman, A. M. Landry-Voyer, J. Majewski and F. Bachand (2012). PLoS Genet 8: e1003078. http://www.ncbi.nlm.nih.gov/pubmed/23166521
A Pre-mRNA degradation pathway that selectively targets intron-containing genes requires the nuclear poly(A)-binding protein
Lemieux, C., S. Marguerat, J. Lafontaine, N. Barbezier, J. Bahler and F. Bachand (2011). Mol Cell 44: 108-119. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21981922
Negative regulation of meiotic gene expression by the nuclear poly(a)-binding protein in fission yeast
St-Andre, O., C. Lemieux, A. Perreault, D. H. Lackner, J. Bahler and F. Bachand (2010). J Biol Chem 285: 27859-27868. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20622014
Negative regulation of meiotic gene expression by the nuclear poly(a)-binding protein in fission yeast
Lemay, J. F., C. Lemieux, O. St-Andre and F. Bachand (2010). RNA Biol 7: 291-295. http://www.ncbi.nlm.nih.gov/pubmed/20400847
The nuclear poly(A)-binding protein interacts with the exosome to promote synthesis of noncoding small nucleolar RNAs
Lemay, J. F., A. D’Amours, C. Lemieux, D. H. Lackner, V. G. St-Sauveur, J. Bahler and F. Bachand (2010). Mol Cell 37: 34-45. https://www.ncbi.nlm.nih.gov/pubmed/20129053